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FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created to investigate the effectiveness of software engineering

technologies when applied to the development of applications software. The SEL

was created in 1976 and has three primary organizational members:

NASA/GSFC, Soft-ware Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the

GSFC environment; (2) to measure the effect of various methodologies, tools, and

models on the process; and (3) to identify and then to apply successful development

practices. The activities, findings, and recommendations of the SEL are recorded in

the Software Engineering Laboratory Series, a continuing series of reports that
includes this document.

The major contributors to this document are

Jerry Doland (CSC)

Jon Valett (GSFC)

Many people in both the Software Engineering Branch at NASA/GSFC and in the

Software Engineering Operation at CSC reviewed this document and contributed their

experiences toward making it a useful tool for Flight Dynamics Division personnel.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771
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ABSTRACT

This document discusses recommended practices and style for programmers using the

C language in the Flight Dynamics Division environment. Guidelines are based on

generally recommended software engineering techniques, industry resources, and local

convention. The Guide offers preferred solutions to common C programming issues

and illustrates through examples of C code.
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1
INTRODUCTION

"Good programming style begins with the

effective organization of code. By using a

clear and consistent organization of the

components of your programs, you make
them more efficient, readable, and
maintainable."

- Steve Oualline, C Elements of Style

1.1 Purpose

This document describes the Software Engineering Laboratory (SEL) recommended

style for writing C programs, where code with "good style" is defined as that which is

• Organized

• Easy to read

• Easy to understand

• Maintainable

• Efficient

1.2 Audience

This document was written specifically for programmers in the SEL environment,

although the majority of these standards are generally applicable to all environments.

In the document, we assume that you have a working knowledge of C, and therefore

we don't try to teach you how to program in C. Instead, we focus on pointing out

good practices that will enhance the effectiveness of your C code.

1.3 Approach

This document provides guidelines for organizing the content of C programs, files, and
functions. It discusses the structure and placement of variables, statements, and

SEL-94-003 I



Introduction

comments. The guidelines are intended to help you write code that can be easily read,

understood, and maintained.

• Software engineering principles are discussed and illustrated.

• Key concepts are highlighted.

• Code examples are provided to illustrate good practices.
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2 READABILITY AND

MAINTAINABILITY

This section summarizes general principles that maximize the

readability and maintainability of C code:

• Organize programs using encapsulation and information

hiding techniques.

• Enhance readability through the use of white space.

• Add comments to help others understand your program.

• Create names that are meaningful and readable.

• Follow ANSI C standards, when available.

2.1 Encapsulation and Information _ding

Encapsulation and information hiding techniques can help you write better organized

and maintainable code. Encapsulation means grouping related elements. You can

encapsulate on many levels:

• Organize a program into files, e.g., using header files to build a cohesive

encapsulation of one idea.

• Organize files into data sections and function sections.

• Organize functions into logically related groups within individual files.

• Organize data into logical groups (data structures).

Information hiding refers to controlling the visibility (or scope) of program

elements. You can use C constructs to control the scope of functions and data. For

example:

• Encapsulate related information in header files, and then include those header

files only where needed. For example, #include <time.h> would be inserted

only in files whose functions manipulate time.

• A variable defined outside the current file is called an external variable. An

external variable is only visible to a function when declared by the extern

declaration, which may be used only as needed in individual functions.

SEL-94-003 3



ReadabilityandMaintainability

Figure 1 illustrates the information hiding concept. The code consists of two files,

three functions, and six variables. A variable name appears to the right of each line

that is within its scope.

File Code Scope

X.C

y.c

#include =local.h"

int a = 2;

static int b = 3;

main()

{
int c = a + b;

xsub(c);

}
xsub(d)

int d;

(
int e = 7 * d;

ysub(e);

}

a

ab

ab

ab

abe

abc

abc

ab

ab

abd

abd

abde

abde
abde

#include =local.h"

ysub(f)
int f;

{
extern int a;

printf("%d_n ", a + f);

a f

a f

a f

Figure 1 Information Hiding

2.2 White Space

Write code that is as easy as possible to read and maintain (taking into consideration

performance tradeoffs for real-time systems when it is appropriate). Adding white

space in the form of blank lines, spaces, and indentation will significantly improve the

readability of your code.
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Reaclabilityand Maintainability

2.2.1 Blank Lines

A careful use of blank lines between code "paragraphs" can greatly enhance

readability by making the logical structure of a sequence of lines more obvious. Using

blank lines to create paragraphs in your code or comments can make your programs

more understandable. The following example illustrates how the use of blank lines

helps break up lines of text into meaningful chunks.

Example: code paragraphing

#_f_e_ 0

#_f_e _P_ 300

#_f_eSTEP 20

main() /* Fahrenheit-Celsius table */

{
int fahr;

for (fahr = DCI4HR; fahr <= UPPER; fahr = fahr + STEP)

printf("%4d %6.1f\n", fahr, (5.0/9.0)*(fahr - 32)) ;

However, overuse of blank lines can defeat the purpose of grouping and can actually

reduce readability. Therefore, use a single blank line to separate parts of your
program from one another.

2.2.2 Spacing

Appropriate spacing enhances the readability oflexical elements such as variables and

operators. The following examples illustrate how to use individual spaces to improve

readability and to avoid errors. The second example is not only harder to read, but the

spacing introduces an error, where the operator/* will be interpreted by the compiler
as the beginning of a comment. Put one space after a comma to improve readability,

as shown in the third example below.

Example: good spacing

*average = *total / *count;

Example: poor spacing

*average= *total/*count;

^ begin

Example: comma spacing

ccncat (sl, s2)

/* compute the average */

/* cc_pute the ave/age */

comment end comment ^

SEL-94-003 5



Readability and Maintainability

2.2.3 Indentation

Use indentation to show the logical structure of your code. Research has shown that

four spaces is the optimum indent for readability and maintainability. However, in

highly nested code with long variable names, four-space indentation may cause the

lines of code to overrun the end of the line. Use four spaces unless other

circumstances make it unworkable.

Example: four-space indentation

m_n ()
{

_t c;

c = getchar();

while (c.'=IK3F)

{

putchar (c);

c = getchar();

}

2.3 Comments

Judiciously placed comments in the code can provide information that a person could

not discern simply by reading the code. Comments can be added at many different

levels.

• At the program level, you can include a REAl)ME file that provides a general

description of the program and explains its organization.

• At the file level, it is good practice to include a file prolog that explains the

purpose of the file and provides other information (discussed in more detail in

Section 4).

• At the function level, a comment can serve as a function prolog.

• Throughout the file, where data are being declared or defined, it is helpful to

add comments to explain the purpose of the variables.

Comments can be written in several styles depending on their purpose and length.

Use comments to add information for the reader or to highlight sections of code.

Do not paraphrase the code or repeat information contained in the Program Design

Language (PDL).
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Readability and Maintainability

This section describes the use of comments and provides examples.

• Boxed commentsmUse for prologs or as section separators

• Block commentsmUse at the beginning of each major section of the code as a

narrative description of that portion of the code.

• Short comments_Write on the same line as the code or data definition they
describe.

• Inline comments_Write at the same level of indentation as the code they
describe.

Example: boxed comment prolog

Example: section separator

Example: block comment

/*

*

*/

Write the comment text here, in cc_lolete sentences.

Use block ccnments when there is more than cne

sentence.

Example: short comments

cbuble ieee_r [];

unsigned char ihn_r[] ;

int count;

/* array of IEEE real*8 values

/* string of I_4 real*8 values

/* ntm_er of real*8 values

Tab comment over far enough to separate it from code statements.

If more than one short comment appears in a block of code or data

definition, start all of them at the same tab position and end all at the same

position.

*/
*/
*/

SFL-94-003 7
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Example: inline comment

switch (ref_type)

(

/* Perform case for either s/c position or velocity

* vector request using the RSL routine c_calpvs */

case I:

case 2:

case n:

}

In general, use short comments to document variable definitions and block comments

to describe computation processes.

Example: block comment vs. short comment

preferred style:

*

* Main sequence:

*/
get and process all user requests

while (,finish ())

(
inquire();
process ();

)

not recommended:

while (!finish() ) /* Main sequence: */

( /* */
inquire (); /* Get user request */

process() ; /* And carry it out */

} /* As long as possible */

2.4 Meaningful Names

Choose names for files, functions, constants, or variables that are meaningful and
readable. The following guidelines are recommended for creating element names.

8 SEL-94-O03



ReadabilityandMaintainability

• Choose names with meanings that are precise and use them consistently

throughout the program.

• Follow a uniform scheme when abbreviating names. For example, if you have

a number of functions associated with the "data refresher," you may want to

prefix the functions with "dr_"

• Avoid abbreviations that form letter combinations that may suggest

unintended meanings. For example, the name "inch" is a misleading

abbreviation for "input character." The name "in_char" would be better.

• Use underscores within names to improve readability and clarity:

get_best fit model
load best estimate model

-- M

• Assign names that are unique (with respect to the number of unique characters

permitted on your system).

• Use longer names to improve readability and clarity. However, if names are

too long, the program may be more difficult to understand and it may be
difficult to express the structure of the program using proper indentation.

• Names more than four characters in length should differ by at least two

characters. For example, "systst" and "sysstst" are easily confused. Add

underscores to distinguish between similar names:

systst sys_tst

sysstst sys_s_tst

• Do not rely on letter case to make a name unique. Although C is case-

sensitive (i.e., "LineLength" is different from "linelength" in C), all names

should be unique irrespective of letter case. Do not define two variables with

the same spelling, but different case.

• Do not assign a variable and a typedef (or struct) with the same name, even

though C allows this. This type of redundancy can make the program difficult
to follow.

2.4.1 Standa_ Nmnes

Some standard short names for code elements are listed in the example below. While

use of these names is acceptable if their meaning is clear, we recommend using longer,
more explicit names, such as "buffer_index."

SF:L-94-O03 9
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Example: standard short names

c characters

i,j,k indices
n counters

p, q pointers

s strings

Example: standard suffixes for variables

_ptr pointer

_file variable of type file*

_fd file descriptor

2.4.2 Vmiable Names

When naming internal variables used by a function, do not duplicate global variable

names. Duplicate names can create hidden variables, which can cause your program

not to function as you intended. In the following example, the internal variable "total"
would override the external variable "total." In the corrected example, the internal

variable has been renamed "grand_total" to avoid the duplication.

Example: hidden variable

int total;

int funcl (void)

{
float total;

)

/* this is a hidden variable */

Example: no hidden variable

int total;

int funcl (void)

{
float grand_total;

}

/* internal variable is unique */

In separate functions, variables that share the same name can be declared. However,
the identical name should be used only when the variables also have the identical

meaning. When the meanings of two variables are only similar or coincidental, use

unique names to avoid confusion.

10 SEL-94-003
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2.4.3 Capitalization

The following capitalization style is recommended because it gives the programmer as

well as the reader of the code more information.

• Variables: Use lower-case words separated by underscores.

• Function names: Capitalize the first letter of each word; do not use
underscores.

• Constants:

• C bindings:

name.

Use upper-case words separated by underscores.

Use the letter "c" followed by an underscore and the binding

Example: capitalization style

open_database variables
ProcessError function names

MAX COUNT constants

c_ephemrd C bindings

Type and Constant Names

Type names (i.e., created with typedef): Follow the naming standards for

global variables.

Enumeration types (declared using enum) and constants declared using

const: Follow the naming conventions for constants.

SEL-94-003 11





3 PROGRAM
ORGANIZATION

This section discusses organizing program code into files. It

points out good practices such as grouping logically related

functions and data structures in the same file and controlling the

visibility of the contents of those files. Figure 2 illustrates the

organizational schema that the discussion will follow.

Program README

Standard libraries

Header files

Program files

Module files

Compilation

<stdio.h>

<math.h>

"globals.h"

"types.h"

program_file.c

File prolog
Usage and operating instructions
Header file includes

External definitions and declarations

Functions

Function prolog

Function parameters
Internal definitions and declarations

Statements

Operators

Expressions
More external data

More functions

module_file.c
utilities Makefile

Figure 2 Program Organization

3.1 Program Files

A C program consists of one or more program files, one of which contains the main( )

function, which acts as the driver of the program. An example of a program file is

SEL-94-003 13
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given in Section 9. When your program is large enough to require several files, you

should use encapsulation and data hiding techniques to group logically related

functions and data structures into the same files. Organize your programs as follows:

• Create a README file to document what the program does.

• Group the main function with other logically related functions in a program
file.

• Use module files to group logically related functions (not including the main

function).

• Use header files to encapsulate related definitions and declarations of variables
and functions.

• Write a Makefile to make recompiles more efficient.

3.2 README File

A README file should be used to explain what the program does and how it is

organized and to document issues for the program as a whole. For example, a

README file might include

• All conditional compilation flags and their meanings.

• Files that are machine dependent.

• Paths to reused components.

3.3 Standard Libraries

A standard library is a collection of commonly used functions combined into one file.

Examples of function libraries include "stdio.h" which comprises a group of

input/output functions and "math.h" which consists of mathematical functions.

When using library files, include only those libraries that contain functions that your

program needs. You may create your own libraries of routines and group them in
header files.

3.4 Header Files

Header files are used to encapsulate logically related ideas; for example the header file

"time.h" defines two constants, three types, and three structures, and declares seven

functions needed to process time. Header files may be selectively included in your

program files to limit visibility to only those functions that need them.

14 SEL-94-003



Program Organization

Header files are included in C source files before compilation. Some, such as "stdio.h"

are defined system-wide, and must be included by any C program that uses the

standard input/output library. Others are used within a single program or suite of

programs. An example of a header file is given in Section 9.

• Use #include <system_name> for system include files.

• Use #include "user file" for user include files.

• Contain in header files data definitions, declarations, typedefs, and enums that

are needed by more than one program.

• Organize header files by function.

• Put declarations for separate subsystems in separate header files.

• Ira set of declarations is likely to change when code is ported from one

platform to another, put those declarations in a separate header file.

• Avoid private header filenames that are the same as library header filenames.

For example, the statement #include <math.h> will include the standard library

math header file if the intended one is not found in the current directory.

• Include header files that declare functions or external variables in the file that

defines the function or variable. That way, the compiler can do type checking

and the external declaration will always agree with the definition.

• Do not nest header files. Use explicit #include statements to include each

header file needed in each program file.

• In the prolog for a header file, describe what other headers need to be included
for the header to be functional.

3.5 Module Files

A module file contains the logically related functions, constants, types, data

definitions and declarations, and functions. Modules are similar to a program file

except that they don't contain the main( ) function.

3.6 Makefiles

Makefiles are used on some systems to provide a mechanism for efficiently

recompiling C code. With makefiles, the make utility recompiles files that have been

changed since the last compilation. Makefiles also allow the recompilation commands

to be stored, so that potentially long cc commands can be greatly abbreviated. An

example ofa Makefile is given in Section 9. The makefile

• Lists all files that are to be included as part of the program.

SEL-94-003 15
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• Contains comments documenting what files are part of libraries.

• Demonstrates dependencies, e.g., source files and associated headers using

implicit and explicit rules.

3.7 Standard Filename Suffixes

The suggested format for source code filenames is an optional prefix (e.g., to indicate

the subsystem), a base name, and an optional period and suffix. The base name

should be unique (length may vary depending on your compiler; some limit filenames

to eight or fewer characters) and should include a standard suffix that indicates the file
type. Some compilers and tools require certain suffix conventions for filenames.

Figure 3 lists some standard suffixes; or use those dictated by your compiler.

File Type Standard Suffix

C source file .c

Assembler source .s

Relocatable object .o
Include header .h

Yacc source .y
Lex source . I

Loader output file .out
Makefile .mak

Linker response files .Ink or .rsp

Figure 3 Standard Filename Suffixes
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4 FILE

ORGANIZATION

The organization of information within a file is as important to

the readability and maintainability of your programs as the

organization of information among files. In this section, we will

discuss how to organize file information consistently. Figure 4

provides an overview of how program file and module

information should be organized.

File Prolog, including the algorithm expressed in PDL

Usage and Operating Instructions, if applicable for program files only

Header File Includes, in this sequence:
#include <stdio.h> (or <stdlib.h>)
#include <other system headers>
#include "user header files"

Defines and Typedefs that apply to the file as a whole, including:
enums
typedefs
constant macro defines
function macro defines

External Data Declarations used by this file
extern declarations of variables defined in other files

non-static external definitions used in this file (and optionally
in others if they are declared in those files using extern)

static external definitions used only in this file

Functions
function prolog
function body

More External Data Declarations used from point of declaration to end of file

More Functions

Figure 4 File Organlzaflon Schema
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4.1 File Prolog

A file prolog introduces the file to the reader. Every file must have a prolog. Figure 5

is an example ofa prolog outline; field values are described below.

/* ****'k ik Ik * ** * W "k *** * * **'k Ib * * * *'k ** * '/r 'k ** * * * "A"W*'/r ** * *'A" * * * W * * * *** **** ** * 'k***

FILE NAME: *

PURPOSE:

FILE REFERENCES :

Name Description

*

* *

. *

* *

* *

* *

* I/O *
* ------ *

* EXTERNAL VARIABLES : *

* Source: < > *

* Name TyPe I/O Description *

* EXTERNAL REFERENCES : *
, *

* Name Description *

* ABNORMAL TNRN]_ATION CONDITIONS, ERROR AND WARNING NES_.GES: *

* ASSUMPTIONS, CONSTRAINTS, RESTRICTIONS: *
. *

* NOTES : *

* RNQUI_S/_XJNCTION_ SPECIFICATIONS REFERENCES: *

* DEVELOPMENT HISTORY : *

* Date Author Change Id Release Description Of Change *
. *

* ALGORITHM (PDL) *

Figure S Program File Prolog Contents

• File Name---Specify the name of the file.

• Purpose--- Briefly state the purpose of the unit.

18 SEL-94-003
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• File References--Specify the name, I/O, and description of files used by
functions within this file. If the file does not have file references, indicate so

by entering "none."

• External Variables--Specify the source, name, type, I/O, and description of
variables being used by the unit that do not come in through the calling

sequence. If the unit does not have external variables, indicate so by entering
"none."

• External References--Specify the exact name of each unit called or invoked
by this unit, followed by a one-line description of the unit. If the unit does
not have external references, indicate so by entering "none."

• Abnormal Termination Conditions, Error and Warning Messages--
Describe the circumstances under which the unit terminates abnormally. List
error messages that this unit issues and briefly explain what triggers each.

• Assumptions, Constraints, RestrictionsmDescribe the assumptions that

are important to the design and implementation of the unit (e.g., "It is assumed

that all input data have been checked for validity.") Include descriptions of
constraints and restrictions imposed by the unit (e.g., "The unit must

complete its execution within 75 microseconds.") This section contains

information that explains the characteristics and peculiarities of the unit.

• Notes--Specify any additional information needed to understand the file's
data or functions.

• Requirements/Functional Specifications References--Provide traceability
between requirements and specifications and implementation.

• Development History--Outline the file's development history:

- Date, day, month, and year of the change

- Author, author of the current implementation or change to the unit

- Change Id, an identification number for the change; e.g., if the change is

related to a numbered SPR, that number may be used to correlate the

change to the SPR

- Release, current software release and build in abbreviated form

- Description of Change, brief narrative describing the change

• Algorithm (PDL)--Descfibe the algorithm used in the program in PDL
format. See Section 4.2 for a detailed discussion of algorithm/PDL.
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Header files (non-program files) such as those containing global definitions,

prototypes, or typedefs, should have an abbreviated prolog as shown in Figure 6.

* NAME:

* PURPOSE:
.

* GI.DB_ VARY.J_I__S :

* Variable Type

*

* DEV'NI._PMENT HISTORY:

* Date Author Change Id

Descript ion

Release Description Of Change

Figure 6 Header File Prolog

4.2 Program Algorithm and PDL

This section of the file prolog describes the overall algorithm of the program or any

special or nonstandard algorithms used. This description in the prolog does not

eliminate the need for inline comments next to the functions. In fact, adding

comments to your functions is recommended to help others understand your code.

In the SEL environment, programmers follow a prescribed PDL style which is

documented both in the Programmer's Handbook for Flight Dynamics Software

Development as well as CSC's SSDM (see Bibliography). The PDL constructs are

summarized here, along with the corresponding C code. These guidelines are

consistent with the Programmer's Handbook.

PDL describes the processing and control logic within software units through the use

of imperative English phrases and simple control statements. Follow these general

guidelines when creating PDL.

• Indent by four spaces the statements defining the processing to occur within a

PDL control structure (unless the code is highly nested and it would run off

the fight side of the page).

• Within a control structure, align each PDL control structure keyword (e.g.,

align the IF, ELSE, etc.). Also align each embedded statement.
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• If a single PDL statement spans multiple print lines, begin each statement

continuation line one space to the right of the parent line.

PDL includes four types of statements, which are described in detail in the paragraphs
to follow:

• Sequence

• Selection Control

• Iteration Control

• Severe Error and Exception Handling

4.2.1 Sequence Statements

A PDL sequence statement describes a processing step that does not alter logic flow.

Specify this type of PDL statement as a declarative English-language sentence

beginning with a single imperative verb followed by a single direct object.

verb object

Assignment statements may be used only in the event that mathematical formula must

be specified.

C=A+B

To call a unit, use a verb (e.g., CALL) followed by the unit name. The unit name may

be followed by a list of descriptive parameters from the calling sequence to that unit

or by a phrase describing the function or purpose &the unit being called.

CA_ <unit _

To signal the end of processing within a unit, use the verb RETURN. A return

statement implies an immediate return to the calling entity.

RE'IURN

4.2.2 Selection Control Statements

Selection control statements define the conditions under which each of several

independent processing paths is executed. There are three PDL selection control

structures: IF THEN ELSE, IF THEN, and CASE. Each of them is shown below in

its PDL format and with an example of corresponding C code.
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4.2.2.1 IF THEN ELSE

The basic format of an if then else statement is:

IF cmndition THSN

true processing

ELSE

false processing

_NDIF

Example: PDL

IF shuttle and payload mode

CALL addstr to display shuttle title

ELSE IF freeflyer only mode THEN

CALL addstr to display ff title

ELSE

CALL addstr to display both titles

_DIF

Example: C code

if (objdisp == SHUT_PAYII3AD)

addstr( "SHUTILE DAqlA") ;

else if (objdisp == FF)

addstr( "FREEFLYSR DAq]_" );

else

addstr ("SHUITLE/FF DAqA" );

4.2.12 IF THEN

The general format of an if then statement is:

IF ccndition TH_q

true processing

_qDIF

Example: PDL

IF offset between request time and time of last calculated

s/c position and velocity vectors exceeds wait time qHEN

elapsed seconds between epoch time and request

time

_qgIF

Example: C code

if ((t_request- t_rv_ref) > t_wait)

eptime = t_request - orbital_t_epoch;
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4.2.2.3 CASE

The general format of a case statement is:

DO CASE of (name)

CASE 1 ccnditicn:

case 1 processing
CASE 2 cc_diticn:

case 2 processing

CASE n ccnditi_:

case n processing

ELSE (opticnal)

else-condition processing
H_DO CASE

OTHERWISE can be substituted for the ELSE keyword.

Example: PDL

DO CASE of axes color

black:

set color to black

yellow:

set color to yellow
red:

set color to red

_SE:

set color to green
[NEDO CASE

Example: C code

switch (axescolor)

{
case 'B':

color = BLACK;

break;
case 'Y' :

color = YELLOW;

break;
case 'R' :

color = RED;

break;
default:

color = GREHN;

break;
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4.2.3 Iteration Control Slatemenls

Iteration control statements specify processing to be executed repeatedly. There are

three basic iteration control structures in PDL: DO WHILE, DO FOR, and DO

UNTIL.

4.2.3.1 DO WHILE

The general format of a do while statement is:

DO WHILE "continue loop" condition true

true processing

_qDDO WHILE

Example: PDL

DO WHILE ui buffer not empty

CALL process_ui issue requests

_qID WHILE

Example: C code

while (ui_b_E != _z)
process__ (ui_b_E, num) ;

4.2.3.2 DO FOR

The general format of a do for statement is:

DO FOR specified discrete items

loop processing
_KDO FCR

Example: PD/

DO FOR each _s view (X, Y, Z)
seCvi_ Co create view

_DO FC_

Example: C code

for (i=0; i < 4; i++)

setview(sys, i) ;
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4.2.3.3 DO UNTIL

The general format of a do until statement is:

DO UNTIL "exit loop" condition true

loop processing
EhDDO UNTIL

Example: PDL

DO UNTIL no ui requests remain
CALL process_ui to issue requests

_XDDO UNTIL

Example: C code

do
process_ui(ui_buf, num) ;

while (ui_count .'= 0);

4.2.4 Severe i_mrand Exception Handling Statemenls

When a serious error or abnormal situation occurs several levels deep in if or do

statements, you may want simply to set an error flag and return to the caller. Using

only the constructs described so far, the choices are limited to setting an abort flag and

checking at each level of nesting. This can quickly complicate an otherwise clean

design. Two PDL statements are available to aid in the handling of severe errors and

exceptions: ABORT to (abort_label) and UNDO.

4.2.4.1 ABORT

ABORT to is used to jump to a named block of processing at the end of the routine.

The block's purpose is to set a fatal error indication and exit the routine. Placing all

abort processing at the end of the routine helps all abnormal condition logic to stand

out from the normal processing.

Example: PDL

DO WHILE more records r_in to be processed

read next record from file

IF an invalid record is encountered

ABORT to INV_REC_FND
_q3IF

(cont'd next page)
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Example: ABORT PDL [cont'd)

(process
WHILE

.*,

INV l_C F_:
inform user of the

set invalid record

this record)

invalid record

indicator

just found

In C, you use a goto statement to exit out of nested loops. Note that you should use

goto statements only for unusual circumstances. In most cases, it is possible to use

structured code instead of using a goto. The two examples below show the same

scenario using structured code and using a goto statement.

Example: structured code

%bile (... && no_error)

for (...)

if (disaster)

error = true;

if error

error_processing;

Example: goto statement

while (...)

for (...)

if (disaster)

goto error;

error:

error_processing;

4.2.4.2 UNDO

UNDO is used within a do (while, for, until) construct to terminate the current loop

immediately. That is, processing jumps to the statement following the ENDDO of

the current do construct. In C, you could use a break statement to exit out of an inner

loop. If'you can avoid the use of breaks, however, do so.
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Example: PDL

DO WHILE more records re_ain to be processed

read next record frcm file

IF an invalid record is encountered

L_DO

_qDIF

(process this record)
HNDD3 WHILE

Example: C code with break statement

while <more records remain to be processed>

(
read next record from file

if <an invalid record is encountered>

break;
process this record

Example: C code with no break statement

while (more records remain to be processed && no_error)

{
read next record frcrn file

if <an invalid record is encountered>

error = true;

else

process this record

4.3 Include Directive

To make header file information available to your program files, you must specifically
include those header files using the #include preprocessor directive. For optimum
efficiency and clarity, include only those header files that are necessary.

• If the reason for the #include is not obvious, it should be commented.

• The suggested file order is:

#include <stdio.h> (or <stdlib.h>)

#include <other system headers>

#include "user header files"
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4.4 Defines and Typedefs

After including all necessary header files, define constants, types, and macros that

should be available to the rest of the file (from the point of declaration to the end of
the file). Include the following, in the sequence shown:

• Enums

• Typedefs

• Constant macros (#define identifier token-string)

• Function macros (#define identifier(identifier, ..., identifier) token-string)

4.5 External Data Declarations and Definitions

After defining constants, types, and macros, you should next have a section in your
file to declare external variables to make them visible to your current file. Define

those variables that you want to be available ("global") to the rest of the file. The

suggested sequence for declaring and defining external data is:

• Extern declarations of variables defined in other files

• Non-static external definitions used in this file (and, optionally, in others if

they are declared in those files using the extern declaration)

• Static external definitions used only in this file

4.6 Sequence of Functions

This section provides general guidelines for arranging functions in the program file.

The organization of information within functions is described in Section 5.

• If the file contains the main program, then the main( ) function should be the
first function in the file.

• Place logically related functions in the same file.

• Put the functions in some meaningful order.

- A breadth-first approach (functions on a similar level of abstraction

together) is preferred over depth-first (functions defined as soon as

possible before or after their calls).

- If defining a large number of essentially independent utility functions, use

alphabetical order.

• To improve readability, separate functions in the same file using a single row
of asterisks.
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• Place functions last in a program file, unless (due to data hiding) you need to
declare external variables between functions.

Example: functions with separators

prolog
main boo_

function_a prolog

function_a b3cly

function_b prolog
function b body

Example: functions with an external variable

funcl ()

{
..o

}

/* The following external variable will be available

/* to func2 but not to funcl */

int count;

rune2()
{

]
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ORGANIZATION

This section discusses guidelines for organizing information

within functions. Figure 7 provides an overview of how

information should be organized within functions.

Function prolog
Name of the function

Arguments of the function
Return value of the function

Function argument declarations
External variable declarations

Internal variable declarations

Automatic internal variable definitions

Static internal variable definitions

Statement =paragraphs" (major sections of the code)
Block comment introducing the algorithm to be performed by

the group of statements
Statements (one per line)

Return statement

Figure 7 Function Organization Schema

5.1 Function Prologs

Every function should have a function prolog to introduce the function to the reader.

The function prolog should contain the following information:

• Function name

- One or more words all in lower case and separated by underscores

Upper case OK if name includes a proper noun (e.g.,

Gaussian_distribution)

Followed by brief descriptive comment

• Arguments listed one per line with the type, I/O, and a brief description

• Return value describes what the function returns
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Example: function prolog

* _C_T _: *

*_: *

* _ TYPE I/O DESCRIPTION *
* ....... *

* _S: *

For a function with a non-boolean return value or no return value (a return of void),

the name should be an imperative verb phrase describing the function's action, or a

noun phrase. For a function that returns a boolean value, its name should be a

predicate-clause phrase.

Example: imperative verb phrase

obtain_next_token

increment_line_counter

Example: noun phrase

Example:

to__of_stack

sensor_reading

predicate-clause phrase

stack is empty

file_is_saved

5.2 Function Arguments

Declare function arguments when the function is defined (even if the type is integer).

Define functions arguments beginning in column 1. Note that arguments are explained

in the function prolog, and therefore do not require explanatory comments following
the function declaration.
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Example: function argument declarations

int getline (char *str, int length)

{

]

5.3 External Variable Declarations

Declare external variables immediately after the opening brace of the function block.

Example: external variable declaration

char *save_string(char *string)

{
extern char *malloc ();

}

5.4 Internal Variable Declaratiom

Internal variables--i.e., those used only by the function (also known as local

variables)--should be defined after the external variables. Follow these guidelines for
internal-variable declarations:

• Align internal variable declarations so that the first letter of each variable name
is in the same column.

• Declare each internal variable on a separate line followed by an explanatory
comment.

- The only exception is loop indices, which can all be listed on the same line
with one comment.

• Ira group of functions uses the same parameter or internal variable, call the

repeated variable by the same name in all functions.

• Avoid internal-variable declarations that override declarations at higher levels;
these are known as hidden variables. See Section 2.4.2 for a discussion of

hidden variables.

5.5 Statement Paragraphing

Use blank lines to separate groups of related declarations and statements in a function
(statement "paragraphing") to aid the reader of the code. In addition, inline

comments can be added to explain the various parts of the function.
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Example: statement paragraphing

char *save_string(char *string)

{
register char *ptr;

/*

* if allocation of the input string is successful,

* save the string and return the pointer; otherwise,

* return null pointer.

*/

if ((ptr = (char *)malloc(strlen(string) + i)) .'=

(char *) NULL)

strcpy (ptr, string);

return (ptr) ;

}

5.6 Return Statement

The return statement is the mechanism for returning a value from the called function

to its caller. Any expression can follow return:

return (expressicn)

• Using an expression in the return statement may improve the efficiency of the

code. Overdoing its use, however, increases the difficulty of debugging.

• Do not put multiple return and exit statements in a function, unless following

this rule would result in convoluted logic that defeats the overriding goal of

maintainability.

• Always declare the return type of functions. Do not default to integer type

(int). If the function does not return a value, then give it return type void.

• A single return statement at the end of a function creates a single, known point

which is passed through at the termination of function execution.

• The single-return structure is easier to change. If there is more to do after a
search, just add the statement(s) between the for loop and the return.
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Example: single return

found = FALSE;

for (i=0 ; i<max && :found ; i++)

if (vec[i] == key )

found = TRUE;

return (found) ;

Example: multiple returns

for (i=0 ; i<max ; i++)

if (vec[i] == key)

return (TRUE) ;

return (FALSE) ;
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6 DATA TYPES, OPERATORS,
AND EXPRESSIONS

This section provides examples of the proper way to format
constant and variable definitions and declarations and discusses

data encapsulation techniques There are several general
guidelines to follow when working with types:

• Define one variable or constant per line

• Use short comments to explain all variables or constants

• Group related variables and constants together

6.1 Variables

When declaring variables of the same type, declare each on a separate line unless the

variables are self-explanatory and related, for example:

int year, rronth, day;

Add a brief comment to variable declarations:

int x; /* _t */

int y; /* _t */

Group related variables. Place unrelated variables, even of the same type, on separate
lines.

int x, y, z;

int year, month, day;

6.2 Constants

When defining constants, capitalize constant names and include comments. In
constant definitions, align the various components, as shown in the examples below.
In ANSI C, there are several ways to specify constants: const modifier, #define

command, and enumeration data types.
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6.2.1 Corot Modifier

Use the const modifier as follows:

ccr_t int SIZE 32;

const int SIZE 16 + 16;

/* size in inches */

/* both evaluate to the ntmT_r 32 */

6.2.2 #def'me Conmmd

The #define preprocessor command instructs the preprocessor to replace subsequent

instances of the identifier with the given string of tokens. It takes the form:

#define IIZgZgIFIER token-string

In general, avoid hard-coding numerical constants and array boundaries. Assign each a

meaningful name and a permanent value using #define. This makes maintenance of

large and evolving programs easier because constant values can be changed uniformly

by changing the #define and recompiling.

#define NLLL 0

#define BSS '\0'

#define FALSE 0

#define TRUE 1

Using constant macros is a convenient technique for defining constants. They not

only improve readability, but also provide a mechanism to avoid hard-coding
numbers.

6.2.3 Enumeration Types

Enumeration types create an association between constant names and their values.

Using this method (as an alternative to #define), constant values can be generated, or

you can assign the values. Place one variable identifier per line and use aligned braces

and indentation to improve readability. In the example below showing generated

values, low would be assigned 0, middle 1, and high 2. When you assign values

yourself, align the values in the same column, as shown in the second example.

Example: generated values

enum positicn

{

LCW,

MIEDLE,

HI_

];
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Example: assigned values

ent_n stack_operat icn_resul t

(
FULL = -2,

BAD_Sqg;_ = -I,

CKAY = 0,

RDT__IY = 0,
EMPIY =i

};

6.2.4 Simple Constants

Use the const modifier instead of the #define preprocessor to define simple constants.

This is preferable because #define cannot be used to pass the address of a number to a

function and because #define tells the preprocessor to substitute a token string for an
identifier, which can lead to mistakes (as illustrated in the example below).

Example: using #define

#define SIZE I0 + i0 /* i0 + i0 will be substituted for SIZE */

°o.

= SIZE * SIZE; /* this evaluates to 10 + 10 * 10 + 10 */
/* which is I0 + (i0 * I0) + I0 = 120 */

Example: using the const modifier

const int SIZE = i0 + i0;

area = SIZE * SIZE;

/* SIZE evaluates to the number 20 */

/* this evaluates to 20 * 20 = 400 */

6.3 Variable Definitions and Declarations

6.3.1 Nun_rs

Floating point numbers should have at least one number on each side of the decimal

point:

0.5 5.0 1.0e+33

Start hexadecimal numbers with 0x (zero, lower-case x) and upper case A-F:

0x223 0xFFF
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End long constants in upper-case L:

123L

6.3.2 Qaalifiers

Always associate qualifiers (e.g., short, long, unsigned) with their basic data types:

short int x;

icng int y;

unsigned int z;

6.3.3 Slnlctmes

The use of structures is one of the most important features of C. Structures enhance

the logical organization of your code, offer consistent addressing, and will generally

significantly increase the efficiency and performance of your programs.

Using common structures to define common elements allows the program to evolve

(by adding another element to the structure, for example), and lets you modify storage

allocation. For example, if your program processes symbols where each symbol has a

name, type, flags, and an associated value, you do not need to define separate vectors.

Example: structures

typedef struct symbol

{
char *name;

int type;

int flags;

int value;

} swmbol_type;
syr_l_t-ype sya_l_table [NSYMB];

6.3.4 Aut_nmlic Variables

An automatic variable can be initialized either where it is declared or just before it is

used. If the variable is going to be used close to where it is declared (i.e., less than one

page later), then initialize it where it is declared. However, if the variable will be used

several pages from where it is declared, then it is better practice to initialize it just
before it is used.
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Example: variable initialized where declared

int max = O;

/* use of max is within a page of where it is declared */

for (i=O; i<n; i++)

if (vec [i] > max)

max = vec[i] ;

Example: variable initialized where used

Use an assignment statement just before the for loop:

int iret,_;

,oo

/* several pages between declaraticn and use */

o.o

m_x= O;

for (i=O ; i<n ; i++)

if (vec[i] > max)

max = vec [i] ;

Or use the comma operator within the for loop:

int _;

/* several pages between declaraticn and use */

for (max = O, i=O; i<n; i++)

if (vec[i] > m_x)
max = vec[i];

6.4 Type Conversions and Casts

Type conversions occur by default when different types are mixed in an arithmetic
expression or across an assignment operator. Use the cast operator to make type

conversions explicit rather than implicit.

Example: explicit type conversion (recommended}

float f;

int i;

f = (int) i;
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Example: implicit type conversion

float f;

int i;

f=i;

6.5 Pointer Types

Explicitly declare pointer entities (variables, function return values, and constants)

with pointer type. Put the pointer qualifier (*) with the variable name rather than

with the type.

Example: pointer declaration

char *s, *t, *u;

6.6 Pointer Conversions

Programs should not contain pointer conversions, except for the following:

• NULL (i.e., integer 0) may be assigned to any pointer.

• Allocation functions (e.g., malloc) will guarantee safe alignment, so the

(properly cast) returned value may be assigned to any pointer. Always use

sizeofto specify the amount of storage to be allocated.

• Size. Pointers to an object of given size may be converted to a pointer to an

object of smaller size and back again without change. For example, a pointer-

to-long may be assigned to a pointer-to-char variable which is later assigned

back to a pointer-to-long. Any use of the intermediate pointer, other than

assigning it back to the original type, creates machine-dependent code. Use it
with caution.

Operator Formatting

Do not put space around the primary operators: -),., and [ ] :

p->m s.m a[i]

Do not put a space before parentheses following function names. Within

parentheses, do not put spaces between the expression and the parentheses:

exp (2, x)
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• Do not put spaces between unary operators and their operands:

!p q3 ++i -n *p &x

• Casts are the only exception, doput a space between a cast and its operand:

(icng) m

• Always put a space around assignment operators:

cl =C2

• Always put a space around conditional operators:

z = (a >b) ? a : b;

• Commas should have one space (or newline) after them:

strncat(t, s, n)

• Semicolons should have one space (or newline) after them:

for (i = O; i < n; ++i)

• For other operators, generally put one space on either side of the operator:

x+y a< b&&b< c

• Occasionally, these operators may appear with no space around them, but the

operators with no space around them must bind their operands tighter than

the adjacent operators:

printf (fxnt, a+l)

• Use side-effects within expressions sparingly. No more than one operator

with a side-effect (% op =, ++, --) should appear within an expression. It is

easy to misunderstand the rules for C compilation and get side-effects

compiled in the wrong order. The following example illustrates this point:

if ((a < b) && (c=--d)) ...

Ira is not < b, the compiler knows the entire expression is false so (c = d) is

never evaluated. In this case, (c _ d) is just a test/relational expression, so

there is no problem. However, if the code is:

if ((a < b) && (_=d++))

d will only be incremented when (a < b) because of the same compiler

efficiency demonstrated in the first example.
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CAUTION: Avoid using side-effect operators within relational expressions.

Even if the operators do what the author intended, subsequent reusers may

question what the desired side-effect was.

• Use comma operators exceedingly sparingly. One of the few appropriate

places is in a for statement. For example:

for (i = 0, j = I; i < 5; i++, j++);

• Use parentheses liberally to indicate the precedence of operators. This is

especially true when mask operators (&, I, and A) are combined with shifts.

• Split a string of conditional operators that will not fit on one line onto separate

lines, breaking after the logical operators:

if (p->next == I',[]LL &&

(total_count < needed) &&

(needed <= MAX_AII/YP) &&

(server_active(current_input)))

statement_l;

statement_2;

statement_n;

6.8 Assignment Operators and Expressions

C is an expression language. In C, an assignment statement such as "a = b" itself has a

value that can be embedded in a larger context. We recommend that you use this

feature very sparingly. The following example shows a standard C idiom with which

most C programmers are familiar.

Example: embedded assignments

while ((c = getchar())

{

staten_nt_l;

statement_2;

statement_n;

}

'= BOF)

However, do not overdo embedding of multiple assignments (or other side-effects) in

a statement. Consider the tradeoff between increased speed and decreased

maintainability that results when embedded statements are used in artificial places.
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Example: nonembedded statements

total = get_total ();

if (total == I0)

printf ("goal achieved\n" );

Example: embedded statements (not recommended}

if ((total = get_total() == i0)

printf ("goal achieved\n")

6.9 Conditional Expressions

In C, conditional expressions allow you to evaluate expressions and assign results in a
shorthand way. For example, the following if then else statement

if (a > b)

z=a;
else

z=b;

could be expressed using a conditional expression as follows:

z = (a > b) ? a : b; /* z = m_x(a, b) */

While some conditional expressions seem very natural, others do not, and we

generally recommend against using them. The following expression, for example, is
not as readable as the one above and would not be as easy to maintain:

c = (a == b) ? d + f(a) : f(b) - d;

Do not use conditional expressions if you can easily express the algorithm in a more
clear, understandable manner. If you do use conditional expressions, use comments to
aid the reader's understanding.

6.10 Precedence and Order of Evaluation

There are 21 precedence rules. Rather than trying to memorize the rules or look them

up every time you need them, remember these simple guidelines from Steve Oualline's

C Elements of SO,le:

• * % / come before + and -

• Put ( ) around everything else
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AND CONTROL FLOW

This section describes how to organize statements into logical

thoughts and how to format various kinds of statements. The
general principles for writing clear statements are as follows:

• Use blank lines to organize statements into paragraphs and

to separate logically related statements.

• Limit the complexity of statements, breaking a complex

statement into several simple statements if it makes the
code dearer to read.

• Indent to show the logical structure of your code.

7.1 Sequence Statements

This section describes the rules for formatting statements in blocks.

7.1.1 Statement Placement

Put only one statement per line (except in for loop statements):

switch (axescolor)

{
case 'B' :

color = BLACK;

break;
case 'Y' :

color = YEI/_C_;

break;

case 'R' :

color = RED;

break;
default:

color = GREE_;

break;
}
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Avoid statements that rely on side-effect order. Instead, put the variables with
operators ++ and -- on lines by themselves:

*destination = *source;

destinaticn++;

source++;
a[i] = b[i++];

It is recommended that you use explicit comparison even if the comparison value

will never change. For example, this statement:

if (.'(bufsize % sizeof (int)) )

should be written instead as

if ((bufsize % sizeof (int)) == O)

to reflect the numeric (not boolean) nature of the test.

7.1.2 Braces

Compound statements, also known as blocks, are lists of statements enclosed in

braces. The brace style we recommend is the Braces-Stand-Alone method. Place
braces on separate lines and align them. This style, which is used throughout this

document, allows for easier pairing of the braces and costs only one vertical space.

Example: Braces-Stand-Alone method

for (i = O, j = strlen(s)-l;

(
c = s [i] ;

s[i] = s[j];

s[j] = c;
}

i < j; i++, j--)

Although C does not require braces around single statements, there are times when
braces help improve the readability of the code. Nested conditionals and loops can

often benefit from the addition of braces, especially when a conditional expression is

long and complex.

The following examples show the same code with and without braces. We encourage
the use of braces to improve readability. Use your own judgment when deciding
whether or not to use braces, remembering that what is clear to you may not be

obvious to others who read your code.
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Example: braces improve readability

for (dp = &values[0]; dp < top_value; dp++)

{
if (dp->d_value == arg_value

&& (dp->d_flag & arg_flag) .'=0)

{

return (dp);

}
}
return (NULL);

Example: no braces

for (dp = &values[0]; dp < top_value;

if (dp->d_value == arg_value &&

(dp->d_flag & arg_flag) != 0)

return (c_o);
return (NULL) ;

dp++)

If the span of a block is large (more than about 40 lines) or there are several

nested blocks, comment closing braces to indicate what part of the process

they delimit:

for

{
(sy = sytable; sy .'=NLLL;

if

{
.o.

}
else

{
o,o

(sy->sy_flag == DEFINED)

sy = sy->sy_link)

/* if defined */

} /* if undefined */
} /* for all symbols */

If a for or while statement has a dummy body, the semicolon should go on the

next line. It is good practice to add a comment stating that the dummy body is
deliberate.

/* Locate end of string */

for (char_p = string; *chard != EOS; char p++)

; /* do nothing */

Always put a space between reserved words and their opening parentheses.

Always put parentheses around the objects of sizeof and return.
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7.2 Selection Control Statements

This section discusses the recommended formatting for selection control statements.

Examples are given to show how to format single statements as well as blocks of
statements.

If

Indent single statements one level:

if (expressicn)

cne_statement;

Indent a block of statements one level using braces:

if (expressicn)

{
statement_l;

statement_n;

}

If I_lse

If else statements that have only simple statements in both the if and else

sections do not require braces but should be indented one level:

if (expressicn)
stat_n_nt

else
statement

If else statements that have a compound statement in either the if or else
section require braces and should be indented one level using braces:

if (expressicn)

cne_statement;
else
{

statement_l;

statement_n;

}
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7.2.3 _eff

For readability, use the following format for else if statements:

if (expressicn)

staten_nt [s]

else if (expression)

statement [s]
else

statement [s]

7.2.4 Nested If Statewents

Z2.4.1 I/I/If

Use nested if statements if there are alternative actions (i.e., there is an action in the

else clause), or if an action completed by a successful evaluation of the condition has
to be undone. Do not use nested if statements when only the if clause contains
actions.

Example: good nesting

status = delta_create ((Callback)NULL, &delta) ;

if ( status == NDB_OK )

{
if ((status = delta_record_conditicn(... )) == NDB_OK &&

(status = delta_field_condition(... )) == NDB_OK &&

(status=delta_field_condition(...) ) == hDB_OK )

status = delta_cc_mit (delta, ... );

_ample:

(void)ndb_destroy_delta (delta) ;

}

inappropriate nesting

status = delta_create ((Callback)NULL,

if (status == NDB_OK)

{

&delta) ;

status = delta_record_conditicn( delta, ... );

if (status == NDB_OK )

{
status = delta_field_condition (delta, ...);

if (status == NDB_OK )

(cont'd next page)
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Example: inappropriate nesting (cant'd)

{
status = delta_field_condition(

if (status == NDB_OK )

status = delta__coamit(delta,

}
]
(VOID) ndb_destroy_delta (delta) ;

}
return (status) ;

Z2.4.2 IflfElse

Because the else part of an if else statement is optional, omitting the "else" from a

nested if sequence can result in ambiguity. Therefore, always use braces to avoid

confusion and to make certain that the code compiles the way you intended. In the

following example, the same code is shown both with and without braces. The first

example will produce the results desired. The second example will not produce the

results desired because the "else" will be paired with the second "if" instead of the

first.

Example: braces produce desired result

if (n > 0)

{
for (i = 0; i < n; i++)

{
if (s[i] > 0)

{
printf ("... ");

return(i) ;

]
}

}
else /* _ -- braces force proper association

printf ("error - n is zero\n" );

*/
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Example: absence of braces produces undesired result

if

else

(n > O)
for (i = O; i < n; i++)

if (s[i] > O)

{
printf ("... ");

return(i) ;

}
/* _ -- the compiler will match to closest */

/* else-less if */

printf ("error - n is zero\n") ;

7.2.5 Switch

For readability, use the following format for switch statements:

switch (expressicn)

{
case aaa:

statement [s ]

break;
case bhb: /* fall through */

case ccc:

statems_t [s ]

break;
default:

statement [s ]

break;
}

Note that the fall-through feature of the C switch statement should be commented for
future maintenance.

All switch statements should have a default case, which may be merely a "fatal error"

exit. The default case should be last and does not require a break, but it is a good idea

to put one there anyway for consistency.

7.3 Iteration Control Statements

This section discusses the recommended formatting for iteration control statements.
Examples are given to show how to format single statements as well as blocks of
statements.
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7.3.1 While

For one statement, use the following format:

while (expressicn)

cne_statement;

For a block of statements, use:

while (expressicn)

{

statement_l;

stat6ment_n;

}

7.3.2 For

Use the following formats:

for (expressicn)

cne_statem_nt;

for (expressicn)

{

statement_l;

statement_n;

If a for loop will not fit on one line, split it among three lines rather than two:

for (curr = *listp, trail = listp;

curr !=NULL;

trail = &(curr->next), curt = curr->next)

statement_l;

staten_nt_n;
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7.3.3 Do While

For readability, use the following format:

do

{
statem_nt_l;

statement_2;

statement_3;

}
while (expressicn)

7.4 Severe Error and Exception Handling

This section discusses the recommended formatting for goto statements and labels.
We also discuss the use of the break statement. Recommendations in this section

correspond to the severe error and exception handling guidelines given in Section 4.2.4.

Note that although gotos and labels are legal constructs of the C language, we do not

recommend using them if you can write clear structured code without them.

7.4.1 Gotas andLabels

Goto statements should be used very sparingly, as in any well-structured code. They
are useful primarily for breaking out of several levels of switch, for, and while nesting,

as shown in the following example:

}
oo_

error:

for

{
°°°)

if" (disaster)

{
gotoerror;

}

error processing

7.4.2 Bn_ak

A break statement can be used to exit an inner loop of a for, while, do, or switch
statement at a logical breaking point rather than at the loop test. The following
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examples, which remove trailing blanks and tabs from the end of each input line
illustrate the difference.

Example: logical break

while ((n = getline(line, MAXLd2qE) )

{
> o)

vahile (--n >= O)

{
if (line[n] != '

line[n] != 'in')

break;

)

' && line[n] != 'St' &&

Example: /oop test

while ((n = getline(line, MAXLINE) )

{
while (--n >= 0 &&

(line[n]==' ' II line [n] == '\t '

; /* _gID */

> o)

II line [n] ==' \n' ))
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8 PORTABILITY AND

PERFORMANCE

Code is often developed on one type of computer and then

ported to and executed on another. Therefore, it is judicious to

make the code as portable as possible, requiring no changes or

minimal ones---such as changes to system-specific header files.

When writing software, consider the following guidelines that

will enhance portability and performance.

8.1 Guidelines for Portability

Use ANSI C whenever it is available.

Write portable code first. Consider detailed optimizations only on computers

where they prove necessary. Optimized code is often obscure.

Optimizations for one computer may produce worse code on another.

Document code that is obscure due to performance optimizations and isolate

the optimizations as much as possible.

• Some code/functions are inherently nonportable. For example, a hardware

device handler, in general, can not be transported between operating systems.

• If possible, organize source files so that the computer-independent code and

the computer-dependent code are in separate files. That way, if the program

is moved to a new computer, it will be clear which files need to be changed for

the new platform.

• Different computers have different word sizes. If'you are relying on a

(predefined) type being a certain size (e.g., int being exactly 32 bits), then

create a new type (e.g., typedef long int32) and use it (int32) throughout the

program; further changes will require only changing the new type definition.

• Note that pointers and integers are not necessarily the same size; nor are all

pointers the same size. Use the system function sizeof(...) to get the size of a

variable type instead of hard-coding it.

• Beware of code that takes advantage of two's complement arithmetic. In

particular, avoid optimizations that replace division or multiplication with
shifts.

• Become familiar with the standard library and use it for string and character

manipulation. Do not reimplement standard routines. Another person reading
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your code might see the reimplementation of a standard function and would

need to establish if your version does something special.

Use #ifdefs to conceal nonportable quirks by means of centrally placed

definitions.

Example: centrally placed definitions

#ifdef decus

#define UNSI(_qHD_I£NS

#else

#define UNSIG_D_Iflk_
#endif

icr_

unsigned long

8.2 Guidelines for Performance

Remember that code must be maintained.

If performance is not an issue, then write code that is easy to understand

instead of code that is faster. For example,

replace: d = (a = b + c) + r; with: a = b + c;
d=a+r,

• When performance is important, as in real-time systems, use techniques to

enhance performance. If the code becomes "tricky" (i.e., possibly unclear),

add comments to aid the reader.

• Minimize the number of opens and closes and I/O operations if possible.

• Free allocated memory as soon as possible.

• To improve efficiency, use the automatic increment ++ and decrement

operators -- and the special operations += and *= (when side-effect is not an

issue).

• ANSI C allows the assignment of structures. Use this feature instead of

copying each field separately.

• When passing a structure to a function, use a pointer. Using pointers to

structures in function calls not only saves memory by using less stack space,

but it can also boost performance slightly. The compiler doesn't have to

generate as much code for manipulating data on the stack and it executes faster.
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9 C CODE
EXAMPLES

The following examples illustrate many of the principles of

good style discussed in this document. They include:

• A Makefile, which provides an efficient mechanism for

building several executables.

• A .c file, which illustrates program file organization and

principles of readability.

• An include file, which illustrates clear and maintainable

definition and organization of constants and external
variables.
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9.1 Makefile

# Makefile for UIX Testing ..

#

#

#

# J. Programmer

#

#

#

This makefile can build 8 different executables.

share some of the same code and share libraries.

#

# Object code for the executables

#

INIT_OBJS = oi_seq_init.o oi_seq_drv_l.o

GEN_SCREEN_OBJS = oi_seq_gen_screen_PRIVATE.o\

oi_seq_drv_l.o \

oi_seq_resize_pane.o\

oi_seq_get_pane_sizes_PRIVATE.o\

oi_seq_init.o

FATAL_OBJS = oi_seq_drv_2.o\

oi_seq_fatal_PRIVATE.o

PROC_FOCUS_EVENTS_OBJS = oi_seq_drv_3.o\

oi_seq_proc_focus_events.o

LOAD_OBJS = oi_seq_load_drv.o\

oi_seq_load.o\

print_seq.o

SUB_BUILD_I = \

ol_seq_init.o\

ol_seq_gen_screen_PRIVATE.o\

Ol_seq_resize_pane.o\

om_seq_get_pane_sizes_PRIVATE.o\

Ol_seq_proc_focus_events.o\

Ol_seq_load.o\

om_seq_change_exec_type.o\

o1_seq_file_error_PRIVATE.o\

om_seq_enable_sequence_PRIVATE.o\

ol_seq_new_app_PRIVATE.o\

ol_seq_prep_load.o\

ol_seq_change_current_PRIVATE.o\

o1_seq_set_detail_pane_PRIVATE.o\

ol_seq_retrieve_detail_pane_PRIVATE.o\

o1_seq_subbld_l.o

SUB_BUILD_2 = \

The executables
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BUILD_2

oz_seq_init.o\

ol_seq_gen_screen_PRIVATE.o\

Ol_seq_proc_focus_events.o\

ol_seq_quit.o\

om_seq_seqcr_spawn_PRIVATE.o\

ol_seq_seqcr_continue.o\

ol_seq_seqcr_handle_sigchld.o\

ol_seq_seqcr_start.o\

oz_seq_seqcr_term.o\

ol_seq_load.o\

ol_seq_change_exec_type.o\

ol_seq_file_error_PRIVATE.o\

ol_seq_enable_sequence_PRIVATE.o\

om_seq__new_app_PRIVATE.o\

ol_seq_prep_load.o\

oz_seq_change_current_PRIVATE.o\

ol_seq_set_detail_pane_PRIVATE.o\

om_seq_retrieve_detail_pane_PRIVATE.o\

o1_seq_new.o\

ol_seq_remove_app.o\

ol_seq_check_seq_ui.o\

ol_seq_seqcr_check_seq_PRIVATE.o\

oz_seq_insert_app.o\

o1_seq_reconfigure_pane_PRIVATE.o\

ol_seq_subbld_2.o

= \
ol_seq_change_current_PRIVATE.o\

om_seq_change_exectype.o\

ol_seq_enable_sequence_PRIVATE.o\

ol_seq_fatal_PRIVATE.o\

ol_seq_gen_screen_PRIVATE.o\

oz_seq_init.o\

oz_seq_load.o\

ol_seq_new_app_PRIVATE.o\

o1_seq_proc_focus_events.o\

om_seq_quit.o\

om_seq_retrieve_detail_pane_PRIVATE.o\

ol_seq_save.o\

ol_seq_set_detail_pane_PRIVATE.o\

om_seq_seqcr_check_seq_PRIVATE.o\

o1_seq_seqcr_continue.o\

ol_seq_seqcr_handle_sigchld.o\

om_seq_seqcr_spawn_PRIVATE.o\

ol_seq_seqcr_start.o\

om_seq_seqcr_term.o\

om_seq_data.o\

o1_seq_reconfigure_pane_PRIVATE.o\

oi seq_b2 stubs.o\

oi_session_mgr_main.o
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# These are included in all executables

OBJS = test__main.o oi_seq_data.o stubs.o

INTERNAL_DEFINES = -DTEST_NO_NCSS

DEFINES =

DEBUG = -g

CUSTOM_FLAGS = -posix -W3 -DXTFUNCPROTO -DFUNCPROTO

CFLAGS = $ (DEBUG) $ (CUSTOM_FLAGS) $ (INCDIR) $ (DEFINES) \

$ (INTERNAL_DEFINES )

# INCLUDE PATHS

INCDIR = -I/u/cmps3/UIX/dev/include \

-I/u/cmps3/UIX/codebase5/sco/source

# LIBRARIES

NCSS_LIBS = #-incss_c -Irpcsvc -irpc -Isocket

XLIBS = -iXtXm_s -iXmu -IXll_s -IPW

UIXLIBDIR = -L/u/cmps3/UIX/Rl/lib/sco -L/u/cmps3/UIX/dev/lib/sco

UIX_LIBS = -luixdiag -luixutil

UIX_LIBS2 = -imsgr

# Compilation for the executables ..o

test_init: $(INIT__OBJS) $(OBJS)

$(CC) -o test_init $(INIT_OBJS) $(OBJS) $(UIXLIBDIR)

$(NCSS_LIBS)\

$(UIX_LIBS) $(XLIBS)

test_gen_screen: $(GEN_SCREEN_OBJS) $(OBJS)

$(CC) -o test_gen_screen $(GEN_SCREEN_OBJS) $(OBJS) $(UIXLIBDIR)\

$(NCSS_LIBS) $(UIX_LIBS) $(XLIBS)

test_fatal: $(FATAL_OBJS) $(OBJS)

$(CC) -o test_fatal $(FATAL_OBJS) $(OBJS) $(NCSS_LIBS) $(UIXLIBDIR)\

$(UIX_LIBS) $(XLIBS)

test_proc_focus_events: $(PROC_FOCUS_EVENTS_OBJS) $(OBJS)

$(CC) -o test_proc_focus_events $(PROC_FOCUS_EVENTS_OBJS) $(OBJS)\

$(UIXLIBDIR) $(UIX_LIBS)

test_load: $(LOAD_OBJS) $(OBJS)

$(CC) -o test_load $(LOAD_OBJS) $(OBJS)\

$(UIXLIBDIR) $(UIX_LIBS) $(XLIBS)

sub_build_l: $(SUB_BUILD_I) $(OBJS)

$(CC) -o $@ $(SUB_BUILD_I) $(OBJS) $(UIXLIBDIR) $(NCSS_LIBS)\

$(UIX_LIBS) $(XLIBS)

sub_build_2: $(SUB_BUILD_2) $(OBJS)

echo $(SUB_BUILD_2)

$(CC) -o $@ $(SUB_BUILD_2) $(OBJS) $(UIXLIBDIR) $(NCSS_LIBS)\

$(UIX_LIBS) $(XLIBS)

build_2: $(BUILD_2)
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$(CC) -o $@ $(BUILD_2) $(UIXLIBDIR) $(NCSS_LIBS)\

$ (UIX_LIBS) $ (XLIBS)

clean:

/bin/rm $(INIT_OBJS) $(OBJS) $(GEN_SCREEN_OBJS) $(FATAL_OBJS)\

$ (LOAD_OBJS) $ (SUB_BUILD_l)

depend:

makedepend -- $(CFLAGS) -- "/bin/is *.c"

# DO NOT DELETE THIS LINE -- make depends on it.

# [a jillion lines that are dependencies generated by makedepend go here]

S£L-94-003 63



CCodeExamples

9.2 C Program File: RF_GetReference.c

_r

_r

qr

9r

_r

_r

FILE NAME: RF_GetReference.c

PURPOSE: This function determines if a requested reference

vector is in need of update. It uses analytic routines

to update vectors and these updates are reflected in the

reference.h include file.

FILE REFERENCES :

Name

none

IO Description

EXTERNAL VARIABLES :

Source : debug.h

Name

debug_f i ie_hand I e

debug_l eve 1

Source : HD_reference.h

Name

ephem_file_lu

ephem_method

Type

FILE*

int[9]

Type

long

char

IO

I

IO

I

keplerian double[6] I

Description

File handle for debug file

name

Debug level array

Description

FORTRAN logical unit number

for the ephemeris file

Method for computing

ephemeris information:

F = Use ephemeris file

A = Compute analytically

using Keplerian

elements

Keplerian orbital elements at

the epoch time

(orbital_t_epoch):

[I] Semimajor axis [km]

[2] Eccentricity

[3] Inclination [rad]

[4] Right ascension of

the ascending node

[rad]

64 SEL-94-003



CCodeExamples

* m_order long

* maxit long

* MU_E doub Ie

* NUMPTS int

* orbital_t_epoch double

* THREEB double

* ttol double

* t_b_ref double

* t_e_ref double

* t m ref double

* t_o_ref double

* trv ref double

* t_s ref double

* e_pos double[3]

* m_pos double [3 ]

* mag_field double [3 ]

* mag_field_unit double[3]

* orbit_normal double[3]

* s_c_pos double [3 ]

* s_c_vel double [3 ]

* s_pos double [3 ]

* EXTERNAL REFERENCES:

* Name Description

* c_ephemrd

* c_calpvs

* c_sunlunp

* c_emagfld

* c_nmlist

I

I

I

I

I

I

I

IO

IO

IO

IO

IO

IO

O

O

O

O

O

O

O

O

[5] Argument of perigee

[rad]

[6] Mean anomaly [rad]

Order of magnetic field

Maximum number of iterations

to converge the true

anomaly

Earth gravitational constant

[km^3/sec^2]

Number of points used by the

EPHEMRD interpolator

Base epoch time of the

orbital elements [sec]

Gravitational constant of

perturbations [Km^2]

Tolerance in the calculations

of the true anomaly [rad]

Time of last calculated Earth

magnetic field vector [sec]

Time of last calculated s/c

to Earth unit vector [sec]

Time of last calculated s/c

to Moon unit vector [sec]

Time of last calculated orbit

normal unit vector [sec]

Time of last calculated s/c

position and velocity

vectors[sec]

Time of last calculated s/c

to Sun unit vector [sec]

S/C to Earth unit vector

S/C to Moon unit vector

Earth magnetic field vector

[mG)

Earth magnetic field unit

vector

Orbit normal unit vector

S/C position vector [km]

S/C velocity vector [km/sec]

S/C to Sun unit vector

Retrieves vectors from an ephemeris file and

interpolates them for a requested time

Generates s/c position and velocity vectors

using J2 effects

Generates Earth to Sun or Earth to Moon

vectors

Generates Earth magnetic field vectors

Opens the magnetic field file for reading
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dr

¢r

dr

dr

¢r

dr

dr

Ib

¢r

dr

dr

dr

¢r

¢r

dr

dr

ib

dr

dr

_r

dr

dr

¢r

/r

dr

/r

dr

dr

dr

dr

dr

dr

¢r

dr

dr

dr

dr

¢r

¢r

te

GetSun

GetOrbitNormal

GetEarth

GetMoon

SecsToCalendar

c_packs t

c_calmjd

c_jgrenha

c_unvec3

Compute s/c to Sun unit vector

Compute orbit normal vector

Compute s/c to Earth vector

Compute s/c to Moon unit vector

Converts time from secornds to standard

calendar format

Converts time from standard calendar format to

an unpacked array format

Computes the modified Julian date of an

unpacked array format time

Computes the Greenwich Hour Angle using

analytical data

Unitizes a vector and computes its magnitude

ABNORMAL TERMINATION CONDITIONS, ERROR AND WARNING MESSAGES:

none

ASSUMPTIONS, CONSTRAINTS, RESTRICTIONS: none

NOTES:

CALLED BY: InitReference, CalcNadirAngle, ConvertAttitude,

ComputeAttitude, CompSunNad, CalcLambdaPhi

REQUIREMENTS/FUNCTIONAL SPECIFICATIONS REFERENCES:

FASTRAD Functional Specifications, Sections 4.3.1 - 4.3.6

DEVELOPMENT HISTORY:

Date Name Change Release Description

ID

09-16-93 J. Programmer 1

10-25-93 J. Programmer 1

11-16-93 J. Programmer 1

12-02-93 J. Programmer 1

12-20-93 J. Programmer 12 1

02-15-94 J. Programmer 15 2

05-03-94 J. Programmer 3

05-10-94 J. Programmer 3

05-10-94 J. Programmer 3

Prolog and PDL

Coded

Controlled

Integrated new RSL

routines

Created intermediate

variables for #define

arguments of calpvs

in order to pass

by address

Corrected time errors

using RSL routines

Enhancements to RSL

prototypes

Added Earth magnetic

field read capability

Added ephemeris read

capability
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ALGORITHM

DO CASE of reference type

CASE 1 or 2, request is for s/c position or velocity vectors

IF offset between request time and time of last calculated s/c

position and velocity vectors exceeds wait time THEN

COMPUTE elapsed seconds between epoch time and request time

IF ephemeris method is for reading file THEN

CALL c_ephemrd to read ephemeris file getting s/c position and

velocity vectors

ELSE (analytic computation)

CALL c_calpvs to generate new s/c position and velocity

vectors

ENDIF

SET new time of last calculated s/c position and velocity

vectors to request time

ENDIF

IF reference type is for s/c position vector THEN

SET return vector to s/c position vector

ELSE

SET return vector to s/c velocity vector
ENDIF

CASE 3, request is for s/c to Sun unit vector

IF offset between request time and time of last calculated s/c to

Sun unit vector exceeds wait time THEN

CALL SecsToCalendar c_packst and c_calmjd to get modified

Julian date

CALL c_sunlunp to generate new Earth to Sun vector

CALL GetSun to compute new s/c to Sun unit vector

SET new time of last calculated s/c to Sun unit vector to

request time

* ENDIF
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¢r

¢r

¢r

¢r

¢r

_r

_r

¢r

¢r

¢r

_r

¢r

SET return vector to s/c to Sun unit vector

CASE 4 or 5, request is for Earth magnetic field vector or Earth

magnetic field unit vector

IF offset between request time and time of last calculated Earth

magnetic field vector exceeds wait time THEN

CALL SecsToCalendar c_packst and c_calmjd to get modified

Julian date

CALL c_jgrenha to get the Greenwich Hour Angle

CALL c_emagfld to generate new Earth magnetic field vector

CALL c_unvec3 to SET Earth magnetic field unit vector

SET new time of last calculated Earth magnetic field vector to

request time

ENDIF

IF reference type is for Earth magnetic field vector THEN

SET return vector to Earth magnetic field vector

ELSE

SET return vector to Earth magnetic field unit vector

ENDIF

CASE 6, request is for orbit normal unit vector

IF offset between request time and time of last calculated orbit

normal unit vector exceeds wait time THEN

CALL GetOrbitNormal to generate new orbit normal unit vector

SET new time of last calculated orbit normal unit vector to

request time

ENDIF

SET return vector to orbit normal unit vector

CASE 7, request is for s/c to Moon unit vector

IF offset between request time and time of last calculated s/c to

Moon unit vector exceeds wait time THEN

CALL SecsToCalendar c_packst and c_calmjd to get modified Julian

date

CALL c_sunlunp to generate new Earth to Moon vector

CALL GetMoon to compute new s/c to Moon unit vector

SET new time of last calculated s/c to Moon unit vector to

request time

ENDIF

SET return vector to s/c to Moon unit vector
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* CASE 8, request is for s/c to Earth unit vector

* IF offset between request time and time of last calculated s/c to

* Earth unit vector exceeds wait time THEN

* CALL GetEarth to compute new s/c to Earth unit vector
.

* SET new time of last calculated s/c to Earth unit vector to

* request time
.

* ENDIF

* SET return vector to s/c to Earth unit vector

* END CASE
.

* RETURN

/* Include global parameters */

#include "HD__debug.h"

#include "HD_reference.h"

/* Declare Prototypes */

void c_ephemrd (long , long , long , double , double *,

double *, double *, double *, long *);

void c_calpvs (double

long

void c_sunlunp (double

void c_emagfl2 (long

long

void c_nmlist (long

void c_packst (double

void c_calmjd (double *, double *);

void c_jgrenha (double , double , long

long *);

void c_unvec3

, double , double *, double , double ,

, double *, double *, long *);

• double , double *, double *);

, double , double , double , double *,

, double *, long *);

• long * , char * , long *);

, double *);

, long

(double *, double *, double *);

, double *,

void GetSun (double[3], double[3]);

void GetOrbitNormal(double[3]);

void GetEarth (double[3]);

void GetMoon (double[3], double[3]);

double SecsToCalendar(double);

* FUNCTION NAME:
.

* ARGUMENT LIST:

* Argument

GetReference

Type IO Description
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* ref_type int

* t_re_.lest double

* t_wait double

* ref_vector double[3]
.

* RETURN VALUE : void

I

I

I

0

Type of reference data requested

= i, S/C position vector

= 2, S/C velocity vector

= 3, S/C to Sun unit vector

= 4, Earth magnetic field

vector

= 5, Earth magnetic field unit

vector

= 6, Orbit normal unit vector

= 7, S/C to Moon unit vector

= 8, S/C to Earth unit vector

Time of requested reference

vector

Wait time between reference

vector calculations

Requested reference vector

void GetReference(int ref_type, double t_request, double t wait,

double ref_vector[3])

{
/* LOCAL VARIABLES:

* Variable

* sun

* moon

* caldate

* starray

* mjd

* gha

* aldiff

* numselc

* numterm

* fdumm

* ierr

* m

* t

* eptime
.

* dpos

* dvel

* loop_counter
* i

Type Description

double[3] Earth to Sun vector [km] (from

c_sunlunp)

double[3] Earth to Moon vector [km] (from

c_sunlunp)

double Epoch time in calendar format

double[6] Epoch time in unpacked array format

double Modified Julian Date [days]

double Greenwich Hour Angle [rad]

double A.I - UTI time difference [sec]

long Number of secular terms of nutation

to compute (I- 39, nominally i)

long Number of nonsecular terms of

nutation to compute (1-106,

nominally 50)

double Unused return value (from c_unvec3)

long Return code from RSL routines

double Variable for #defined MU_E

double Variable for #defined THREEB

double Elapsed seconds between epoch time

and requested time [sec]

double Array of dummy position vectors used

by ephemris read routine

double Array of dummy velocity vectors used

by ephemris read routine

int Loop counter

int Loop counter
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int Loop counter

double int

double int

double int

long int

long int

long int

long int

long int

int int

char

sun[3], moon[3], caldate, starray[6], mid, gha,

aldiff, fdumm;

m, t;

eptime;

numselc, numterm;

ierr = -I00;

two = 2;

four = 4;

zero = 0;

i,j;

*mag_path = "/public/libraries/rsl/hpux/emag1990.dat';

static int loop_counter = 0;

static double int dpos[3] [100], dvel[3][100];

/* Initialize local parameters for RSL routines */

aldiff = 0.0;

numselc = 1 ;

numterm = 50 ;

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,'ENTER GetReference\n');

if (debug_level[RF] > INPUT)

{
fprintf(debug_file_handle,'ktINPUTkn');

switch (tel_type)

{
case i:

fprintf(debug_file_handle,

"\tktreference type (ref_type = I) S/C position vector\n');

break;

case 2:

fprintf(debug_file_handle,

"\tktreference type (ref_type = 2) S/C velocity vector\n');

break;

case 3:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 3) S/C to Sun unit vector\n');

break;

case 4:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 4) Earth mag field vector\n');

break;

case 5:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 5) Earth mag field unit vector\n');

break;
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case 6:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 6) Orbit normal unit vector\n');

break;

case 7:

fprintf(debug_file_handle,

"\t\treference type (ref_type = 7) S/C to Moon unit vector\n');

break;

case 8:

fprintf(debug file_handle,

"\tktreference type (ref_type = 8) S/C to Earth unit vector\n");

break;

)

fprintf(debug_file_handle,

• \t\trequest time [sec] (t_request) = %if\n',t_request);

fprintf(debug_file_handle,

"\t\twait time [sec] (t_wait) = %if\n',t_wait);

/* Begin Case of reference type */

switch (ref type)

(

/* Perform case for either s/c position or velocity vector request

* using the RSL routine c_calpvs */

case i:

case 2:

if (debug_level[RF] > INPUT)

(

fprintf(debug_file_handle,

"\t\tlast pos and vel vector time [sec] (t_rv_ref) = %if\n',

t_rv_ref);

fprintf(debug_file_handle,

"\tktephemeris read method flag (ephem_method) = %c\n',

ephem_method);

if ((t_request - trv ref) > t_wait)

(

eptime = t_request - orbital_t_epoch;

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,"\tINTERMEDIATEkn');

fprintf(debug_file_handle,

"\tktRequest time [secs from reference]

(eptime) = %if\n*,eptime);

if (ephem_method == 'F °)

(

if (loop_counter == 0)
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}
else

(

for (i=0; i<100; i++)

for (j=0; j<3; j++)

(
dpos[j] [i] = 0.0;

dvel[j] [i] = 0.0;

}

loop_counter++;

c_ephemrd(ephem_file_lu, four, zero,eptime,

dpos,dvel, s_c_pos,s_c_vel,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_ephemrd = %Id\n',ierr);

m = MU_E;

t = THREEB;

c_calpvs(eptime,m, keplerian, t,ttol,maxit, s_c_pos,s c vel,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_calpvs = %id\n",ierr);

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,

"\t\tEarth gravitational constant [km^3/secA2]

(MU_E) = %Ifkn',MU_E);

fprintf(debug_file_handle,

"\tktGrav. constant [Km^2]

(THREEB) = %Ifkn',THREEB);

fprintf(debug_file_handle,

"\tkttolerance of true anomaly [tad]

(ttol) = %ifkn',ttol);

fprintf(debug_file_handle,

"\tktmax iters of true anomaly (maxit) = %dkn',maxit);

fprintf(debug_file_handle,

"\tkttime of request [sec from epoch]

(eptime) = %ifkn',eptime);

fprintf(debug_file_handle,

"\tktsemi major axis [km]

(keplerian[l]) = %Ifkn',keplerian[0]);

fprintf(debug_file_handle,

"\tkteccentricity (keplerian[2]) = %ifkn',keplerian[l]);

fprintf(debug_file_handle,
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"\t\tinclination [rad] (keplerian[3]) =

%ifkn',keplerian[2]);

fprintf(debug_file_handle,

"\tktra of asc node [rad] (keplerian[4]) =

%if\n',keplerian[3]);

fprintf(debug file_handle,

"\t\targ of perigee [rad] (keplerian[5]) =

%ifkn',keplerian[4]);

fprintf(debug_file_handle,

"\tktmean anomaly [rad] (keplerian[6]) =

%if\n',keplerian[5]);

t_rv_ref = t_request;

if (debug_level[RF] > INTERMEDIATEI

{
fprintf(debug_file_handle,

"\t\ts/c position vector [km] (s_c_pos) = %If,%if,%if\n',

s_c_pos[0],s_c_pos[l],s_c_pos[2]);

fprintf(debug_file_handle,

"\t\ts/c velocity vector [km] (s_c_vel) = %If,%if,%if\n',

s_c_vel[0],s_c_vel[l],s_c_vel[2]);

}
}

if (ref_type == i)

for (i=0 ; i<3 ; i++)

ref_vector[i] = s_c_pos[i];

else

for (i=0 ; i<3 ; i++)

ref_vector[i] = s_c_vel[i];

break;

/* Perform case for s/c to Sun unit vector request using the RSL

* routine c_sunlunp */

case 3:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\tktlast sun vector time [sec] (t_s_ref) = %If\n',t_s_ref);

if ((t_request - t_s_ref) > t_wait)

{
caldate = SecsToCalendar(t_request);

c_packst (caldate, starray);

c_calmjd (starray,&mjd);

c_sunlunp(mjd, t_request,sun,moon);

GetSun (sun,s_pos);

t_s_ref = t request;
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if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,'\tINTERMEDIATE\n");

fprintf(debug_file_handle,

"\t\tModified Julian Date [days] (mjd) = %if\n", mjd);

fprintf(debug_file_handle,

"\t\ttime of request [sec] (use t_request see above) \n");

)

for (i=0 ; i<3 ; i++)

ref_vector[i] = s_pos[i];

break;

/* Perform case for Earth magnetic field vector or Earth magnetic

* field unit vector using RSL routines c_emagfld and c_unvec3 */

case 4:

case 5:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\tktlast Earth mag field vector time [sec] (t_b_ref) = %Ifkn',

t b ref);

if ((t_request - t_b_ref) > t_wait)

{

caldate = SecsToCalendar(t_request);

c_packst (caldate,starray);

c_calmjd (starray,&mjd);

c_jgrenha(mjd, aldiff,numselc,numterm,&gha,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_jgrenha = %idkn',ierr);

c_nmlist(l,&two,mag_path,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_nmlist = %id\n",ierr);

c_emagfl2(two,mjd, t_request,gha, s_c_pos,m_order,mag_field,&ierr);

if (ierr)

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,

"**** Error code from c_emagfl2 = %idkn',ierr);

c_unvec3 (mag_field,mag_field_unit,&fdumm);

t_b_ref = t_request;
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if (debug_level[RF] > INTERMEDIATE)

(
fprintf(debug_file_handle,'\tINTERMEDIATE\n');

fprintf(debug_file_handle,

"\tktModified Julian Date [days] (mjd) = %ifkn', mjd);

fprintf(debug_file_handle,

"\t\ttime difference [sec] (aldiff) = %if\n', aldiff);

fprintf(debug_file_handle,

"\tktnutation number (numselc) = %dkn", numselc);

fprintf(debug_file_handle,

"\tktnutation number (numterm) = %d\n', numterm);

fprintf(debug_file_handle,

"\t\tGreenwich Hour Angle [rad] (gha) = %if\n', gha);

fprintf(debug_file_handle,

"\tktorder of magnetic field (m_order) = %dkn', m_order);

fprintf(debug_file_handle,

"\tkts/c position vector [km] (s_c_pos) = %if,%if,%ifkn',

s_c_pos[0],s_c_pos[l],s_c_pos[2]);

fprintf(debug_file_handle,

"\tkttime of request [sec] (use t_request see above) \n');

if (ref_type == 4)

for (i=0 ; i<3 ; i++)

ref_vector[i] = mag_field[i];

else

for (i=0 ; i<3 ; i++)

ref_vector[i] = mag_field_unit[i];

break;

/* Perform case for orbit normal unit vector request */

case 6:

/* Debug : Intermediate */

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\tktlast normal unit vector time [sec] (t_o_ref) = %ifkn',

t_o_ref);

if ((t_request - t_o_ref) > t_wait)

{
GetOrbitNormal(orbit_normal);

t_o_ref = t_request;

)

for (i=0 ; i<3 ; i++)

ref_vector[i] = orbit_normal[i];

break;
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/* Perform case for s/c to Moon unit vector request using the RSL

* routine c_sunlunp */

case 7:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\t\tlast moon vector time [sec] (t__m_ref) = %if\n',t m ref);

if ((t_request - t_m_ref) > t_wait)

(
caldate = SecsToCalendar(t_request);

c_packst (caldate,starray);

c_calmjd (starray,&mjd);

c sunlunp(mjd, t_request,sun,moon);

GetMoon (moon,m_pos);

t_m_ref = t_request;

if (debug_level[RF] > INTERMEDIATE)

{
fprintf(debug_file_handle,'\tINTERMEDIATEkn');

fprintf(debug_file_handle,

"\t\tModified Julian Date [days] (mjd) = %ifkn', mjd);

fprintf(debug_file_handle,

"\tkttime of request [sec] (use t_request see above) \n");

for (i=0 ; i<3 ; i++)

ref_vector[i] = m_pos[i];

break;

/* Perform case for s/c to Earth unit vector request */

case 8:

if (debug_level[RF] > INPUT)

fprintf(debug_file_handle,

"\t\tlast Earth vector time [sec] (t_e_ref) = %if\n",t_e_ref);

if ((t_request - t_e_ref) > t_wait)

{
GetEarth(e_pos);

t_e_ref = t_request;

for (i=0 ; i<3 ; i++)

ref_vector[i] = e_pos[i];

break;
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} /* end switch */

if (debug_level[RF] > OUTPUT)

(
fprintf(debug_file_handle,"\tOUTPUT\n");

fprintf(debug_file_handle,

"\t\trequested reference vector (ref_vector)

ref_vector[0],ref_vector[l],ref_vector[2]);

= %if,%if,%ifkn',

if (debug_level[RF] > TRACE)

fprintf(debug_file_handle,"EXIT GetReference\n\n');

return;

/* end */
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9.3 Include File: HD_reference.h

* GLOBAL VARIABLES:

* Variables

* e_pos

* ephem_file_lu

* ephem_file_name

* ephem__method

* keplerian

*

*

*

*

*

*

* m_order

* m_pos

* mag_field

* mag_field_unit

FILE NAME: HD_reference.h

PURPOSE: Defines all reference data variables.

Type

double[3]

long

char[30]

char

double[6]

long

double[3]

double[3]

double[3]

Description

S/C to Earth unit vector

FORTRAN logical unit number

for the ephemeris file

Name of the ephemeris file

Method for computing

ephemeris information:

F = Use ephemeris file

A = Compute analytically

using Keplerian

elements

Keplerian orbital elements

at the epoch time

(orbital_t_epoch):

[i] Semimajor axis [km]

[2] Eccentricity

[3] Inclination [rad]

[4] Right ascension of

the ascending node

[rad]

[5] Argument of perigee

[rad]

[6] Mean anomaly [tad]

Order of magnetic field

S/C to Moon unit vector

Earth magnetic field vector

[mG]

Earth magnetic field unit

vector
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* maxit

* MU_E

* NUMPTS

* orbit_norraal

* orbital_t_epoch

* s_c_pos

* s_c._ve 1

* S_pOS

* t b ref

* t e ref

*

* t_m_re f

* t_o_ref

* t_rv_re f

* t_s_ref

* THREEB

*

* ttol

long

double

int

double[3]

double

double[3]

double[3]

double[3]

double

double

double

double

double

double

double

double

Maximum number of

iterations to converge

the true anomaly

Earth gravitational

constant [km^3/sec^2]

Number of points used by

the EPHEMRD interpolator

Orbit normal unit vector

Base epoch time of the

orbital elements [sec]

S/C position vector [km]

S/C velocity vector

[kmlsec]

S/C to Sun unit vector

Time of last calculated

Earth magnetic field

vector [sec]

Time of last calculated s/c

to Earth unit vector

[sec]

Time of last calculated s/c

to Moon unit vector [sec]

Time of last calculated

orbit normal unit vector

[sec]

Time of last calculated s/c

position and velocity

vectors[sec]

Time of last calculated s/c

to Sun unit vector [sec]

Gravitational constant of

perturbations [Km^2]

Tolerance in the

calculations of the true

anomaly [rad]
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*k

¢r

'/r

¢r

¢r

'A"

¢r

"A"

DEVELOPMENT HISTORY:

Date Author Change

ID

Release

09-23-93 J. Programmer 1

10-07-93 J. Programmer 1

12-02-93 J. Programmer 1

* 12-17-93 J. Programmer 2

04-06-94 J. Programmer 27 3

05-10-94 J. Programmer 3

Description of Change

Prolog and PDL
Controlled

Integrated new RSL

routines

Added maxit and ttol;

added MU_E and THREEB

as #defines

Corrected the THREEB

value

Added ephemeris read

capability

#define MU_E 398600.8

#define THREEB 66042.0

#define NUMPTS 4

extern long

extern double

extern char

extern char

extern double

extern long

extern double

extern double

extern double

extern long

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

extern double

ephem_file_lu;

e_pos[3];

ephem_file_name[30];

ephem method;

keplerian[6];

m_order;

m_pos[3];

mag_field[3];

mag_field_unit[3];

maxit;

orbit_normal[3];

orbital_t_epoch;

s_c_pos[3];

s c vel[3];

s_pos[3];

t_b_ref;

t_e_ref;

t m ref;

t_o_ref;

t_rv_ref;

t_s_ref;

ttol;
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